OLTP stands for On-line Transaction Processing and OLAP stands for On-line Analytical Processing. We may have heard these definition many times. But do we really understand the difference between them. Let's explore further on these two kinds of systems and their characteristic differences

Definition

OLTP

On Line Transaction Processing describes processing of short and simple transaction data at operational sites i.e. day to day operations in the source systems. The Database is designed as application-oriented (E-R based) i.e highly Normalized so as to efficiently support INSERT and UPDATE operations. Data stored in these systems are raw, current (Up-to-date) and isolated data, in a much detailed level in flat relational tables.

OLAP: On Line Analytical Processing, describes processing at the centralized, integrated and consistent Data Warehouse. It acts as the Decision Support System for the business end users. The Database is designed as Subject-oriented (Star / Snowflake Schema) i.e. highly Denormalized to efficiently support the SELECT operations. Data in these systems are generally consolidated,summarized and historical Data in nature.

What is a Data Warehouse

A Data Warehouse can be defined as a centralized, consistent data store or Decision Support System (OLAP), for the end business users for analysis, prediction and decision making in their business operations. Data from various enterprise-wide application/transactional source systems (OLTP), are extracted, cleansed, integrated, transformed and loaded in the Data Warehouse.

Properties of a Data Warehouse

Subject-oriented Data Warehouse is designed based on the major subjects areas of the business, rather than the major application areas of the enterprise. The ultimate necessity is to store decision-support data rather than application-oriented data.

Integrated The data in Data Warehouse comes from different enterprise-wide application source systems. The source data is often inconsistent in nature. During the Integration process, source data must be made consistent in Data Warehouse so that the data becomes homogeneous and uniform.

Time-variant The source data in the Data Warehouse is only accurate and valid at some point in time or over some time interval.

Non-volatile Data in Data Warehouse is not updated or replaced in real time but is refreshed from operational systems on a regular basis. New data is always added incrementally integrating it with the previous data set.

Why we go for Data Warehouse instead of OLTP Reporting and Analysis

  1. OLAP reporting requires historical data whereas the operational databases do not maintain history and updates the transactions.
  2. Data in Data Warehouse is loaded after consolidation, integration, aggregation as well as summarization of data from various heterogeneous OLTP source systems. Hence in that case we will fail to generate OLTP reporting.
  3. Also the data in the different source systems uses inconsistent data representations, codes, and formats which have to be reconciled before loading into Data Warehouse.
  4. Finally, complex OLAP queries will obviously degrade the performance of operational / transactional source systems. The OLTP databases are designed and tuned to support insert and update operations mainly.


Have a question on this subject?

Ask questions to our expert community members and clear your doubts. Asking question or engaging in technical discussion is both easy and rewarding.

Are you on Twitter?

Start following us. This way we will always keep you updated with what's happening in Data Analytics community. We won't spam you. Promise.

  • Why people Hate Project Managers – A must read for would-be managers

    "Project Managers" are inevitable. Love them or hate them, but if you are in a project, you have to accept them. They are Omnipresent in any project. They intervene too much on technical things without much knowledge. They create unrealistic...

  • Business Intelligence

    In a 1958 article, IBM researcher Hans Peter Luhn used the term business intelligence. He defined intelligence as: "the ability to apprehend the interrelationships of presented facts in such a way as to guide action towards a desired goal."

  • What is Data Warehousing?

    A data warehouse is a repository of an organization's electronically stored data. Data warehouses are designed to facilitate reporting and analysis.

  • OLTP and OLAP

    OLTP stands for On-line Transaction Processing and OLAP stands for On-line Analytical Processing. We may have heard these definition many times. But do we really understand the difference between them. Let's explore further on these two kinds of...

  • Top 10 things you must know before designing a data warehouse

    This paper outlines some of the most important (and equally neglected) things that one must consider before and during the design phase of a data warehouse. In our experience, we have seen data warehouse designers often miss out on these items...

  • Top 10 things to avoid in DWBI project management

    Watch this space...

  • Data Retention and Purging in a Data Warehouse

    By the typical definition of data warehouse, we expect the data warehouse to be non-volatile in nature for its entire design life time. As long as it remain operation, all data loaded in the data warehouse should remain there for the purpose of...

  • Top 5 Challenges of Data Warehousing

    Data warehousing projects are one of its kinds. All data warehousing projects do not pose same challenges and not all of them are complex but they are always different. This article illustrates the top 5 challenges that often plague modern data...

  • A road-map on Testing in Data Warehouse

    Testing in data warehouse projects are till date a less explored area. However, if not done properly, this can be a major reason for data warehousing project failures - especially in user acceptance phase. Given here a mind-map that will help a...

  • What is a data warehouse - A 101 guide to modern data warehousing

    This article discusses data warehousing from a holistic standpoint and quickly touches upon all the relevant concepts that one needs to know. Start here if you do not know where to start from.