In the previous article, we have learnt How to Install and Configure Hive with default Derby metastore. However, an embedded derby based metastore can process only one request at a time. Since this is very restrictive, we will setup a traditional relational database (in this case MySQL) to handle multi-client concurrency. In this article we will configure MySQL database as Hive metadata Metastore.

In the previous article, we have shown how to setup a client node. Once this is done, now let's put Hadoop to use for some big data analytics purpose. One way to do that is by using Hive which let's us run SQL queries against the big data. A command line tool and JDBC driver are provided out of the box to connect users to Hive. Let's install Hive now.

Once we have our multi-node hadoop cluster up and running, let us create an EdgeNode or a GatewayNode. Gateway nodes are the interface between the Hadoop cluster and the outside network. Edge nodes are used to run client applications and cluster administration tools.

The Hadoop, since its inception is changing the way the enterprises store, process and analyse data. MapReduce is the core part of the Hadoop framework and we can also call it as the core processing engine of Hadoop. It is a programming model designed to process large amount of data in parallel by dividing the load across multiple nodes in a Hadoop cluster. Continuing on our previous discussion on MapReduce, let's go deeper in this article.

Setting up Hadoop in a single machine is easy, but no fun. Why? Because Hadoop is not meant for a single machine. Hadoop is meant to run on a computing cluster comprising of many machines. Running HDFS and MapReduce on a single machine is great for learning about these systems, but to do useful work we need to run Hadoop on multiple nodes. There are a few options when it comes to staring a Hadoop cluster, from building our own to running on rented hardware, or using any offering that provides Hadoop as a service in the cloud. But, how can we - the learners, the beginners, the amateurs - take advantage of multi-node Hadoop cluster? Well, allow us to show you.

In this article we will learn about the Apache Hadoop framework architecture. The basic components of the Apache Hadoop HDFS & MapReduce engine are discussed in brief.

The Apache Hadoop is next big data platform. Apache Hadoop is an open-source, java-based framework software for reliable, scalable & distributed computing. The Apache Hadoop allows distributed processing of very large data sets across clusters of commodity machines (low-cost hardware computers) using simple programming models.

In my previous article – “Fools guide to Big Data” – we have discussed about the origin of Bigdata and the need of big data analytics. We have also noted that Big Data is data that is too large, complex and dynamic for any conventional data tools (such as RDBMS) to compute, store, manage and analyze within a practical timeframe. In the next few articles, we will familiarize ourselves with the tools and techniques for processing Bigdata.

Sure enough, you have heard the term, "Big Data" many times before. There is no dearth of information in the Internet and printed medium about this. But guess what, this term still remains vaguely defined and poorly understood. This essay is our effort to describe big data in simple technical language, stripping-off all the marketing lingo and sales jargons. Shall we begin?

Have a question on this subject?

Ask questions to our expert community members and clear your doubts. Asking question or engaging in technical discussion is both easy and rewarding.

Are you on Twitter?

Start following us. This way we will always keep you updated with what's happening in Data Analytics community. We won't spam you. Promise.