Normalizer transformation is a native transformation in Informatica that can ease many complex data transformation requirements. Learn how to effectively use normalizer in this tutorial.

What is a Noramalizer Transformation?

In a snapshot, here is what a Normalizer is or does:

  • Active Transformation
  • Can output multiple rows for each input row
  • Can transpose the data (transposing columns to rows)

A Normalizer is an Active transformation that returns multiple rows from a source row, it returns duplicate data for single-occurring source columns. The Normalizer transformation parses multiple-occurring columns from COBOL sources, relational tables, or other sources. Normalizer can be used to transpose the data in columns to rows.

Normalizer effectively does the opposite of what Aggregator does!

Transposing data using Normalizer

Let's imagine we have a table like below that stores the sales figure for 4 quarters of a year in 4 different columns. As you can see each row represent one shop and the columns represent the corresponding sales. Next, imagine - our task is to generate a result-set where we will have separate rows for every quarter. We can configure a Normalizer transformation to return a separate row for each quarter like below..

The following source rows contain four quarters of sales by store:

Source Table:

Store Quarter1 Quarter2 Quarter3 Quarter4
Shop 1 100 300 500 700
Shop 2 250 450 650 850

The Normalizer returns a row for each shop and sales combination. It also returns an index - called GCID (we will know later in detail) - that identifies the quarter number:

Target Table:

Shop Sales Quarter
Shop 1 100 1
Shop 1 300 2
Shop 1 500 3
Shop 1 700 4
Shop 2 250 1
Shop 2 450 2
Shop 2 650 3
Shop 2 850 4

How to use Normalizer transformation inside Informatica Mapping

Now that you know the concept of a normalizer, let's see how we can implement this concept using Normalizer transformation. We will take a different data set for our example this time. Suppose we have the following data in source:

Name Month Transportation House Rent Food
Sam Jan 200 1500 500
John Jan 300 1200 300
Tom Jan 300 1350 350
Sam Feb 300 1550 450
John Feb 350 1200 290
Tom Feb 350 1400 350

and we need to transform the source data and populate this as below in the target table:

Name Month Expense Type Expense
Sam Jan Transport 200
Sam Jan House rent 1500
Sam Jan Food 500
John Jan Transport 300
John Jan House rent 1200
John Jan Food 300
Tom Jan Transport 300
Tom Jan House rent 1350
Tom Jan Food 350

Now below is the screen-shot of a complete mapping which shows how to achieve this result using Informatica PowerCenter Designer.

Normalization Mapping

Please click on the above image to enlarge it. You can see after the Source Qualifier, we have placed the Normalizer transformation. In the next section, I will explain how to set up the properties of the normalizer.

Setting Up Normalizer Transformation Property

First we need to set the number of occurrences property of the Expense head as 3 in the Normalizer tab of the Normalizer transformation. This is because we have 3 different types of expenses in the given data - Food, Houserent and Transportation.

As soon as we set the occurrences to 3, Normalizer will in turn automatically create 3 corresponding input ports in the ports tab along with the other fields (e.g. "Individual" and "Month" fields). These 3 input ports, as you can see in the above image, are EXPENSEHEAD_in1, EXPENSEHEAD_in2, EXPENSEHEAD_in3. We have connected these input ports with food, house rent and transportation from the source qualifier. Below image shows the setting up of number of occurrences property.

Normalizer Tab

Next, In the Ports tab of the Normalizer the ports will be created automatically as configured in the Normalizer tab.

But, Interestingly we will observe two new columns here. They are ,

  • GK_EXPENSEHEAD
  • GCID_EXPENSEHEAD

See these ports in the below screen shot. Again, if you need - please click on the image to enlarge it

Normalizer PORTS Tab GCID_

GK field generates sequence number starting from the value as defined in Sequence field while GCID holds the value of the occurrence field i.e. the column no of the input Expense head.

In our case, 1 is for FOOD, 2 is for HOUSERENT and 3 is for TRANSPORTATION. Now the GCID will give which expense corresponds to which field while converting columns to rows.

Below is the screen-shot of the expression to handle this GCID efficiently:

Normalization Expression GCID

As you can see above, the DECODE statement is used to assign proper level to the output expense head field


Have a question on this subject?

Ask questions to our expert community members and clear your doubts. Asking question or engaging in technical discussion is both easy and rewarding.

Are you on Twitter?

Start following us. This way we will always keep you updated with what's happening in Data Analytics community. We won't spam you. Promise.

  • Informatica Java Transformation

    Feel the Power of Java programming language to transform data in PowerCenter Informatica. Java Transformation in Informatica can be used either in Active or Passive Mode.

  • CDC Implementation using Informatica Variable

    This article explains the Change Data Capture mechanism using Informatica Mapping Variable. We can use the Informatica Mapping Variable to extract the CDC data without using any other custom table. Here it goes.

  • Aggregation with out Informatica Aggregator

    Since Informatica process data on row by row basis, it is generally possible to handle data aggregation operation even without an Aggregator Transformation. On certain cases, you may get huge performance gain using this technique!

  • Implementing SCD2 in Informatica Using ORA_HASH at Source

    In this article we shall see how we can implement SCD type2 in Informatica using ORA_HASH, which is an ORACLE function that computes hash value for a given expression. We can use this feature to find the existence of any change in any of the SCD...

  • Generate Surrogate Key without using Sequence Generator

    It is possible to generate sequential surrogate key in the target table without the use of an Informatica Sequence Generator transformation. Using this option, one can avoid any gap in the sequence numbers of the surrogate key.

  • Working with Informatica Flatfiles

    In this article series we will try to cover all the possible scenarios related to flatfiles in Informatica.

  • When to use Informatica Stored Procedure Transformation

    There are loads of mis-information spreaded across Internet on good use-cases of Informatica Stored Procedure transformation. Exactly where do you use this transformation? This article finds out.

  • How to get Folders and Mapping names from Informatica Metadata Query

    We can use OPB_MAPPING and OPB_SUBJECT tables residing under informatica Repository to obtain information about all the mappings under each Informatica Folder. Following SQL query shows you how to do it.

  • APEAR - A tool for automating Informatica Performance Tuning

    DWBIConcepts is launching APEAR – an Automated Performance Evaluation and Reporting tool for Informatica. As the name suggests, this tool will help you tune the performance of Informatica sessions fully automatically. Now don't waste your precious...

  • Informatica Performance Tuning - Complete Guide

    This article is a comprehensive guide to the techniques and methodologies available for tuning the performance of Informatica PowerCentre ETL tool. It's a one stop performance tuning manual for Informatica.