Databricks
Databricks is an industry-leading modern Cloud Data Platform used for processing and transforming massive quantities of data and exploring the data through machine learning models.
The Databricks provides a single platform to unify all our data, analytics and AI workloads. Databricks is based on the open source Apache Spark framework.
Azure Databricks
Azure Databricks is a data analytics platform optimized for the Microsoft Azure cloud services platform. Azure Databricks offers three environments for developing data intensive applications: Databricks SQL, Databricks Data Science & Engineering, and Databricks Machine Learning.
Databricks SQL provides an easy-to-use platform for analysts who want to run SQL queries on their data lake, create multiple visualization types to explore query results from different perspectives, and build and share dashboards.
Databricks Data Science & Engineering provides an interactive workspace that enables collaboration between data engineers, data scientists, and machine learning engineers. For a big data pipeline, the data (raw or structured) is ingested into Azure through Azure Data Factory in batches, or streamed near real-time using Apache Kafka, Event Hub, or IoT Hub. This data lands in a data lake for long term persisted storage, in Azure Blob Storage or Azure Data Lake Storage. As part of your analytics workflow, use Azure Databricks to read data from multiple data sources and turn it into breakthrough insights using Spark.
Databricks Machine Learning is an integrated end-to-end machine learning environment incorporating managed services for experiment tracking, model training, feature development and management, and feature and model serving.